
Dylan Reference Manual
Draft, September 29, 1995

C H A P T E R 1

Background and Goals

3

Introduction 1

Background and Goals 1

Dylan is a general-purpose high-level programming language, designed for
use both in application and systems programming. Dylan includes garbage
collection, type-safety, error recovery, a module system, and programmer
control over runtime extensibility of programs.

Dylan is designed to allow efficient, static compilation of features normally
associated with dynamic languages.

Dylan was created out of the belief that programs have become too complex for
traditional static programming languages. A new generation of software—
software that can be built quickly and enhanced over time—requires
higher-level programming tools. The core of these tools is a simple and
expressive language, one which protects the programmer from low-level
implementation details, but still produces efficient executables.

Dylan was designed from the ground up with a thoroughly integrated object
model, syntax, and control structures. It is not source code compatible with any
existing languages, and can therefore be more internally self-consistent. At the
same time, Dylan’s syntax and object-model allow a high-level of integration
with libraries written in other languages such as C and C++.

Dylan avoids providing multiple ways of doing the same thing. Quite the
opposite, the language often uses a single construct to achieve several ends.
For example, Dylan’s type declarations improve the efficiency and readability
of programs, they ensure type safety, and they provide the basis of
polymorphic dispatch, the basic mechanism of object-oriented flow of control.

And while simplicity of language is very important, it should not and need not
come at the price of expressiveness. Multi-method dispatch is an example of a
Dylan feature that makes the language more powerful and simultaneously
makes Dylan programs easier to understand.

Dylan demonstrates that a programming language can be highly expressive,
can encourage the use of appropriate abstraction, can make programming more
productive, and can make the programming process enjoyable, all without
sacrificing the ability to compile into code that is very close to the machine, and
therefore very efficient.

This document was created with FrameMaker 4.0.4

	Dylan Reference Manual
	Contents
	About This Book
	Introduction
	Background and Goals
	Language Overview
	Manual Notation

	Syntax
	Overview
	Libraries and Modules
	Bindings
	Macros
	Bodies
	Definitions
	Local Declarations
	Expressions
	Statements
	Parameter Lists
	Lexical Syntax
	Special Treatment of Names
	Escaping Names
	Function Call Shorthand

	Top- Level Definitions
	Dylan Interchange Format
	Naming Conventions

	Program Structure
	Modules
	Defining Module Bindings

	Libraries

	Program Control
	Overview
	Function Calls
	General Syntax
	Slot Reference
	Element Reference

	Operators
	Assignment
	Conditional Execution
	True and False

	Iteration
	Iteration Statements
	Tail Recursion

	Non- Local Exits and Cleanup Clauses
	Multiple Values
	Order of Execution
	Execution Order Within Expressions

	Types and Classes
	Overview
	The Type Protocol
	Base Types and Pseudosubtypes
	Type Disjointness

	Classes
	Features of Classes
	Creating Classes
	Class Inheritance
	Computing the Class Precedence List

	Slots
	Slot Inheritance
	Slot Specifications
	Init Specifications
	Init Keywords
	Slot Allocation
	Constant Slots
	Specializing Slots
	Overriding Slots in Subclasses
	Using Slots

	Instance Creation and Initialization
	Overview
	Additional Behavior of Make and Initialize
	Initialization of Class Allocated Slots
	Testing the Initialization of a Slot

	Inherited Slot Specifications
	Initialization Argument Specifications
	Initialization Argument Inheritance

	Singletons
	Union Types
	Limited Types
	Limited Type Constructor
	Limited Integer Types
	Limited Integer Type Protocol

	Limited Collection Types

	Functions
	Overview
	Generic Functions
	Methods
	Methods in Generic Functions
	Local Methods
	Bare Methods
	Closures

	Parameter Lists
	Kinds of Parameters
	Kinds of Parameter Lists
	Specializing Required Parameters
	Keyword Parameters
	Types for Keyword Parameters

	Result Values
	Parameter List Congruency
	Parameter Lists of Implicitly Defined Generic Functions

	Method Dispatch
	Method Specificity
	Calling Less Specific Methods
	Passing Different Arguments to Next- Method
	The Next- Method Parameter

	Operations on Functions

	Conditions
	Background
	Overview
	Signalers, Conditions, and Handlers
	Exception Handling
	Stack Model
	Recovery and Exits
	Restarts
	Recovery Protocols

	Condition Messages
	Introspective Operations

	Collections
	Overview
	The Iteration Protocol

	Collection Keys
	Iteration Stability and Natural Order
	Mutability
	Collection Alteration and Allocation
	Collection Alignment
	Defining a New Collection Class
	Tables
	Element Types
	Limited Collection Types
	Element Type Subclassing
	Creating Limited Collection Types
	Uninstantiable Limited Collection Types
	Instantiable Limited Collection Types

	Sealing
	Overview
	Explicitly Known Objects
	Declaring Characteristics of Classes
	Declaring Characteristics of Generic Functions
	Define Inert Domain
	Rationale
	Pseudosubtype Examples
	Abbreviations for Define Inert Domain
	Implied Restrictions on Method Definitions

	Macros
	Overview
	Compilation and Macro Processing

	Extensible Grammar
	Definition Macros
	Statement Macros
	Function Macros

	Macro Names
	Rewrite Rules
	Patterns
	Special Rules for Definitions
	Special Rules for Statements
	Special Rules for Function Macros

	Pattern Variable Constraints
	Intermediate Words

	Templates
	Auxiliary Rule Sets
	Hygiene
	Intentional Hygiene Violation
	Hygiene Versus Module Encapsulation

	Rewrite Rule Examples
	Statement Macros
	Begin
	Block
	Case
	For
	If
	Method
	Select
	Unless
	Until
	While

	Definition Macros
	Define Class
	Define Constant
	Define Domain
	Define Generic
	Define Library
	Define Method
	Define Module
	Define Variable

	Additional Examples
	Test and Test- setter
	Transform!
	Formatting- table
	With- input- context
	Define Command
	Get- resource
	Completing- from- suggestions
	Define Jump- instruction

	The Built- In Classes
	Overview
	Objects
	Types
	Types
	Classes
	Singletons

	Simple Objects
	Characters
	Symbols
	Booleans

	Numbers
	Numbers
	Complex Numbers
	Reals
	Floats
	Rationals
	Integers

	Collections
	Collections
	Explicit Key Collections
	Sequences
	Mutable Collections
	Stretchy Collections
	Arrays
	Vectors
	Deques
	Lists
	Ranges
	Strings
	Tables

	Functions
	Functions
	Generic Functions
	Methods

	Conditions
	Conditions
	Serious Conditions
	Errors
	Warnings
	Restarts
	Aborts

	The Built- In Functions
	Overview
	Constructing and Initializing Instances
	General Constructor
	Initialization
	Specific Constructors

	Equality and Comparison
	Not and Identity
	Equality Comparisons
	Magnitude Comparisons

	Arithmetic Operations
	Properties
	Arithmetic Operations

	Coercing and Copying Objects
	General Coercion Function
	Coercing Case
	Copying Objects

	Collection Operations
	Collection Properties
	Selecting Elements
	Adding and Removing Elements
	Reordering Elements
	Set Operations
	Subsequence Operations
	Mapping and Reducing
	Simple Mapping
	Extensible Mapping Functions
	Other Mapping Functions

	The Iteration Protocol
	The Table Protocol

	Reflective Operations on Types
	Functional Operations
	Function Application
	Reflective Operations on Functions
	Operations on Conditions
	Signaling Conditions
	Handling Conditions
	Introspection on Conditions

	Other Built- In Objects
	Other Built- In Objects

	The Built- In Macros and Special Operators
	Overview
	Definitions
	Local Declarations
	Statements
	Conditionals
	Iteration Constructs

	Special Operators
	Assignment
	Conditional Execution

	Appendix A
	General Notes
	Lexical Notes
	Lexical Grammar
	Comments
	Tokens
	Reserved Words
	Names, Symbols and Keywords
	Operators
	Character and String Literals
	Numbers

	Grammar
	Program Structure
	Property Lists
	Fragments
	Definitions
	Local Declarations
	Expressions
	Statements
	Methods
	Macro Definitions
	Patterns
	Templates
	Auxiliary Rule Sets

	Glossary
	Index

